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phases of triple products. Before performing these 
calculations we had expected that when the heavy-atom 
positions were unknown we would find an improved 
formula related to (1) and (3), with a scaling factor 
depending on the magnitudes of rhk and r~F,. However, 
no improved formula was obtained; this, we think, is 
probably due to our use of the assumption (Stl ~f ,)  -- 0. 

In the improvement described in the preceding section 
we employ the magnitudes of the individual structure 
factors. In view of the excellent results it is expected 
that more intricate calculations via the joint probability 
distribution of the magnitudes and phases of Fh, 
Fk, F h ~ ,  F~, F~, and Fh+ k will lead to a formula for 
sin 0hk which is closely related to our improved 
formulae (1) and (24). 

Surprisingly, for dexetimide the results with the 
improved formula are better than the results with the 
formula in which the exact values of the cosines are 
used (Table 1). Therefore it follows that here the 
estimates compensate for the approximations made to 
obtain (1) and (2). 

A P P E N D I X  

(i) If there are three identical anomalous scatterers one 
may approximate 

"C~k ~ 3f"[ f (h) f (k)  + f ( h ) f ( h  + k) + f ( k ) f ( h  + k)] 

x 1 + ~  Y. [cos2nh .U i + c o s 2 ~ k . U  i 
i=1 

+ cos 2n(h + k). Ui]~ 
~t 

J 

~-- 3f" [ f (h) f (k)  + f ( h ) f ( h  + k) + f ( k ) f ( h  + k)] 

x [1 + 2g(IEh 12 + IEk 12 + IEh+k 12-  3)], 

where the U i are the vectors between the anomalous 
scatterers and K is given by (23). 

(ii) If there are four identical anomalous scatterers 
with a centrosymmetric configuration one may 
approximate 

r~k ~-- 4f"[ f (h) f (k )  + f ( h ) f ( h  + k) + f ( k ) f ( h  + k)] 

x 1 + ½ ~ [cos2nh. U i+  cos2nk.  U i 
i=1 

+ cos 2n(h + k). Ui] 
2 

+ Z [cos 2nh.V i + cos 2nk. V i 
i=1 

+ cos 2n(h + k). Vi]} 

\ 

~_ 4f"[f(h)f(k)  + f ( h ) f ( h  + k) + f ( k ) f ( h  + k)] 

X [1 + 3K(Igh 12 + Igkl 2 + IEh+k 12 -- 3)], 

where the U i are the single vectors between the 
anomalous scatterers and the V i are the double vectors. 
Again K is given by (23). 
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A generalized discussion of direct methods of solving the phase problem leads to the suggestion that 
overlapping vectors in the Patterson function may be the cause of failures in these methods. A simple removal 
of these overlapping vectors is proposed, which produces modified IEI values. These were used with the 
program MULTAN to solve the structure of a prostratin derivative, C22H2806, which had otherwise resisted 
solution. 

1. Direct methods 

For the discussion of direct methods which follows, an 
analogy with the heavy-atom method may be useful. 

* Present address. 

After the first stage (finding the heavy atoms) one has 
quite accurate knowledge of small parts of the electron 
density, complete ignorance concerning the remaining 
electron density, and approximations to the phases 
throughout reciprocal space. With a direct method of 
phase determination, after assigning values for a few 
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phases, one has quite accurate knowledge of the phases 
in a few parts of reciprocal space, complete ignorance 
of the remaining phases, and some sort of approxi- 
mation to the electron density throughout the unit cell. 
Although this approximate electron density is not 
normally calculated, it is implicit in the ptiases known 
at that stage. One proceeds by extending the known 
region in each case. 

It is usual to regard the structure factor amplitudes 
as the observed data; the problem is regarded as solved 
when a set of atomic parameters has been found which, 
by Fourier transformation, generates a corresponding 
set of structure factor amplitudes which agree satisfac- 
torily with the data. However, the Patterson function 
may instead be regarded as the observed datum, since it 
is readily obtained from the X-ray observations. The 
problem is solved when a plausible set of atomic 
parameters generates by self-convolution a function 
which agrees satisfactorily with the observed datum. 

A direct method of phase determination may be seen 
then as the postulation of a very approximate electron 
density throughout the unit cell, followed by its 
refinement; the refinement is subject to two constraints. 
First, the implicit 'calculated' Patterson function must 
be made to agree more closely with the 'observed' 
Patterson function. This is achieved simply by increas- 
ing the number of structure factors to which phases 
have been assigned (or, if weights are used, by making 
all the weights approach unity). The phases assigned to 
the structure factors do not influence the 'calculated' 
Patterson function. The second constraint is that the 
electron density implicit in the phases and weights 
known at an early sta.ge should become more atomic in 
character. New phases are generated and old ones 
improved by the use of relations which have been 
derived from the assumed atomic nature of the electron 
density. 

The number of atoms is not built into the phase 
relations in a very direct way; i.e. not in such a way as 
to encourage strongly the solution to come up with 
approximately the correct number of atoms. 

2. What can go wrong during this procedure? 

The observed Patterson function may contain a few 
large peaks, caused by the accidental overlap of several 
interatomic vectors. An approximate structure may be 
able to throw up a few large spurious peaks which 
when self-convoluted generate these prominent features 
of the Patterson map. We can identify those structure 
factors which contribute most to the overlapping peaks 
on the Patterson map, and delay their introduction into 
the set of phased reflexions. Since the magnitude of a 
normalized structure factor influences the likelihood of 
its introduction into the set of phased reflexions, we 
may weight down these potentially troublesome struc- 
ture factors. 

3. Other treatments of the problem 
If a large peak appears in the observed Patterson 
function at e.g. ½,0,0, then structure factors with h even 
will be large, and those with h odd will be small. 
Hauptman & Karle (1959) give an actual example 
(more complicated than above) and overcome this 
rational dependence of the atomic positions by renor- 
malizing sets ofreflexions. 

In the simple example above one would scale so that 
( [ e l 2 ) h e v e n  = 1 and separately ( ] E l 2 ) h o d d  = 1. Block & 
Perloff (1963) used a computer program to search 
reciprocal space for sets of reflexions with an abnormal 
<IEI2>. 

If h, + h2 + h3 = 0, and we know the phases ~p,, cp 2, 
of ~(h,) and ~(h2), a measure of the accuracy of the 
prediction of (P3 is cos(~p, + cp 2 + cp3) (= 1 for a 
completely accurate prediction). Hauptman & Karle 
(1962) derived an expression for IX, ~2~31 cos (tp, + cp2 
+ tp3) in terms of the Patterson function; if individual 
Patterson peaks could be identified, and overlap was 
suspected, the value of I~',~2~31 cos (~p, + ~P2 + cP3) 
could be reduced. 

Karle & Hauptman (1964) pointed out that the 
Patterson function should not have any negative 
regions and that if the minimum bond length is d, 
P(r) = 0, Irl < d (if the origin peak is removed). They 
suggested modifying the Patterson to fulfil these 
requirements if they are not already met, and then 
calculating the Fourier transform. The Fourier coef- 
ficients yield new values of the normalized structure 
factors. 

4. Removal of overlapping peaks 

The remedy suggested in this paper is simply to remove 
the large peaks from the Patterson function, Fourier 
transform to obtain modified structure factors, and 
then proceed normally. This will reduce those structure 
factors which contribute most to the overlapping peaks 
without explicitly identifying them. The 'calculated' 
Patterson function will be forced to conform to the 
majority of the 'observed' Patterson function, and not 
just to its outstanding features. 

The program M U L T A N  (Germain, Main & 
Woolfson, 1971) was used because it is almost 
automatic in operation. This was considered to give a 
more objective test of the proposed modification than a 
calculation which required a crystallographer's judge- 
ment. This was felt to be particularly important in the 
choosing of origin- and enantiomorph-fixing and 
starting reflexions (described by Germain, Main & 
Woolfson, 1970). 

5. Prostratin 

Prostratin is an extract from Pimelea prostrata which 
proved difficult to characterize. An MnO 2 oxidation 
product eventually produced crystals of poor quality. 
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Crystal data: C22H2806, M r --~ 388.6, space group 
P2,2,2,,  a = 9.901 (2), b = 11.739 (3), c -- 17.879 (3) 
A, crystal size ca 0.3 × 0.18 × 0.12 mm. X-ray 
measurements were made on a Hilger & Watts four- 
circle diffractometer, using Cu Ka radiation (Ni filter). 
715 reflexions had intensities I > 3or (a calculated from 
counting statistics): 880 had I > 2a. Absorption 
corrections were not applied. Various methods were 
tried to solve the phase problem, including the 
M U L T A N  program package, but without success. 

A sharpened Patterson function was calculated from 
all the normalized structure factors [E(000) was not 
included]. This showed several peaks whose height was 
about 7% of the origin peak. With four molecules of 
C22H2806 in the unit cell, the highest single vector 
( O - O )  should have a height 1.3% of the origin peak, 
whereas C - C  vectors should be 0 .7% of the origin 
peak height. This indicates that the highest point on the 
Patterson map corresponds to 5-10 overlapping 
vectors. 

Fig. 1. The sharpened Patterson function (continuous line) of 
prostratin and the modification made to it (dotted line). The 
section is taken through the origin and the largest non-origin 
peak. 

Fig. 2. An OR TEP diagram of prostratin. Oxygen atoms are 
shown filled, but hydroxyl hydrogen atoms are not shown. 

A cut-off level, c, was chosen arbitrarily in the first 
trial as 5% of the origin peak. A simple modifying 
function would be 

P' ---- c, P _> c, 
P '  -- P, P < c. 

In fact a smoother modifying function was used, and 
the origin peak was not changed: 

P'(x) = c tanh [P(x)/c], P > 0 and Ixl > 2 A, 
P'(x) = P(x), P < 0 or I xl < 2 ,/k. 

Fig. 1 shows a section through the Patterson 
function passing through the origin and the highest 
non-origin peak, together with the modifications made 
according to this cut-off procedure. 

This modified Patterson function P'  was Fourier 
transformed to yield a set of modified I EI 2 values, and 
by taking the square root a set of modified IEI values 
was obtained. Although the Fourier coefficients of this 
modified Patterson are not necessarily positive, the 
smallest IEI 2 was in fact - 0 -18 ,  and none of the E's 
above 0.57 had IEI 2 < 0 after modification. Only those 
IEl's > 1.2 were used in the M U L T A N  program. The 
r.m.s, change in IEI for those structure factors with 
IEI > 1.2 was 0.03. 

The modified IEl's greater than 1.2 were input to the 
program M U L T A N  and eight solutions obtained. The 
most likely of these to be the correct one was used to 
calculate an E map which revealed 27 of the 28 non- 
hydrogen atoms in the structure. The remaining atoms 
were found by difference maps and the structure was 
refined in the usual way, using the original structure 
factor amplitudes. A preliminary account of  the 
structure has been published (McCormick, Nixon & 
Waters, 1976), and some of its interesting chemical and 
biological features discussed. Fig. 2 shows an OR T E P  
diagram of the structure. 

6. Sodium cupric oxalate 

This method was also used successfully to solve the 
structure of sodium cupric oxalate dihydrate, 
NaECU(CEO4)E2H20 (Braithwaite, Nixon & Waters, 
1978), but in retrospect this may have been using a 
sledgehammer to crack a nut. 

I should like to express my thanks to Professor T. N. 
Waters for his encouragement and advice on this work, 
and to Dr D. A. D. Parry for the fast Fourier transform 
program, used for performing the transformation on 
the Patterson function. 
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Optical selected-area diffraction patterns made from high-resolution electron micrographs of crystals have 
been used as a source of diffraction information from areas as small as a single unit cell of the crystal. The 
intensities of the electron diffraction pattern of the specimen crystal and the optical diffraction patterns 
of high-resolution electron-microscope images have been discussed by electron optical image formation 
theory taking account of spherical aberration and defocusing of the objective electron lens and it is 
concluded that the optical diffraction pattern may be identical with the electron diffraction pattern if the 
electron micrograph is photographed under optimum conditions. Optical diffraction patterns from areas of 
80, 30 and 10 A in diameter of labradorite feldspar have been taken and the orientation of two adjoining 
grains, 30 /k in diameter, has been determined. The diffraction pattern from a unit-cell area has also 
been taken and compared with the calculated intensity. 

1. Introduction 

The selected-area diffraction technique in electron 
microscopy serves to provide a diffraction pattern from 
a small finite area of a crystalline specimen under 
electron-microscope observation and can be used for 
identifying materials. Since, however, the objective lens 
of the electron microscope has a certain amount of 
spherical aberration, some diffracted beams from the 
region adjoining the field-limiting aperture can pass 
through the objective aperture and therefore influence 
the diffraction pattern. The error of correspondence 
between the specimen area selected and the area 
actually producing the diffraction pattern is expressed 
by Cs~t 3 as Riecke (1961) has shown, where st is the 
scattering angle of the electron waves and C s is the 
spherical aberration coefficient of the objective lens. 
For example, when the diffraction pattern of a lattice 
plane with 1.13 .A spacing (A1222) is taken at 100kV 
with a lens having a spherical aberration coefficient 
C s = 3.6 mm, the error in the selected specimen area 
is 1260 /k. Therefore, the correspondence between 
image and diffraction pattern will not hold if the area 
limited by the field aperture is small. However, for 

accurate structure analysis, the uncertainty in the 
correspondence should be avoided. 

Uyeda, Dupouy, Perrier, Ayroles & Bousquet (1963) 
have pointed out that the error of the area limited by 
the field-limiting aperture becomes small at high 
voltages because then the scattering angle , for the 
electrons is small. Making use of this relation, Koreeda, 
Okamoto, Shimizu & Katsuta (1971)have shown that 
the minimum accurate area for taking the diffraction 
pattern of lattice planes with 1.0 A spacing at 500 kV 
becomes 80 A and diffraction patterns may be taken 
from an area 250 A in diameter for crystals containing 
precipitates and lattice imperfections. Koike & Ueno 
(1973) and Geiss (1975) have used a small probe 
of the scanning transmission electron microscope to 
take diffraction patterns from areas as small as 50 A 
in diameter of crystalline materials. Since in these 
techniques the field-limiting aperture limits the intensity 
of the electron beams which form the electron diffrac- 
tion pattern, exposures of 1 to 5 min or more are 
necessary to take diffraction patterns. During these 
long exposures radiation damage, specimen contamina- 
tion and drift of the specimen occur and thus there may 
be poor correspondence between image and diffraction 


